

Agenda de la reunión

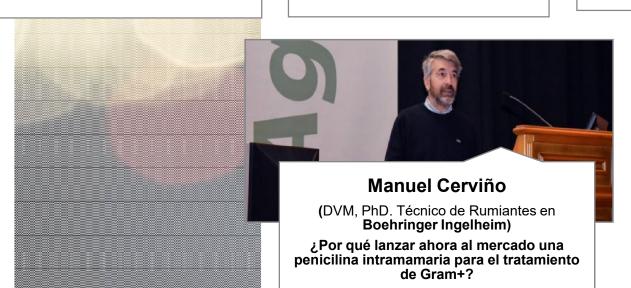
Marta Dalmases

(Licenciada en Química especialidad en Bioquímica, Gerente de Registros y Farmacovigilancia en Boehringer Ingelheim) Una Salud Única

Oriol Franquesa

(DVM Socio QLLET)
Miembro grupo SOLOMAMITIS
Mastitis por Gram +:
Visión desde la Granja

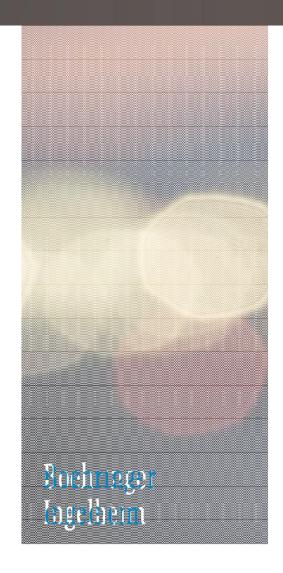
Anna Jubert

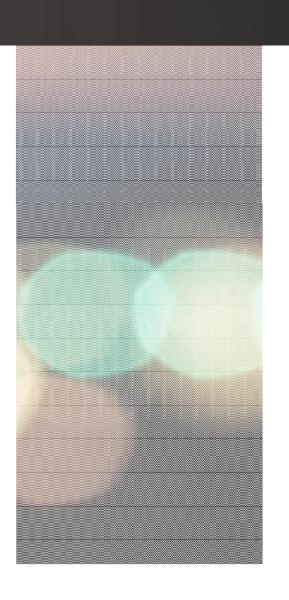

(Directora ALLIC)
Miembro grupo SOLOMAMITIS
Herramientas de Diagnóstico
en Granja

Susana Astiz

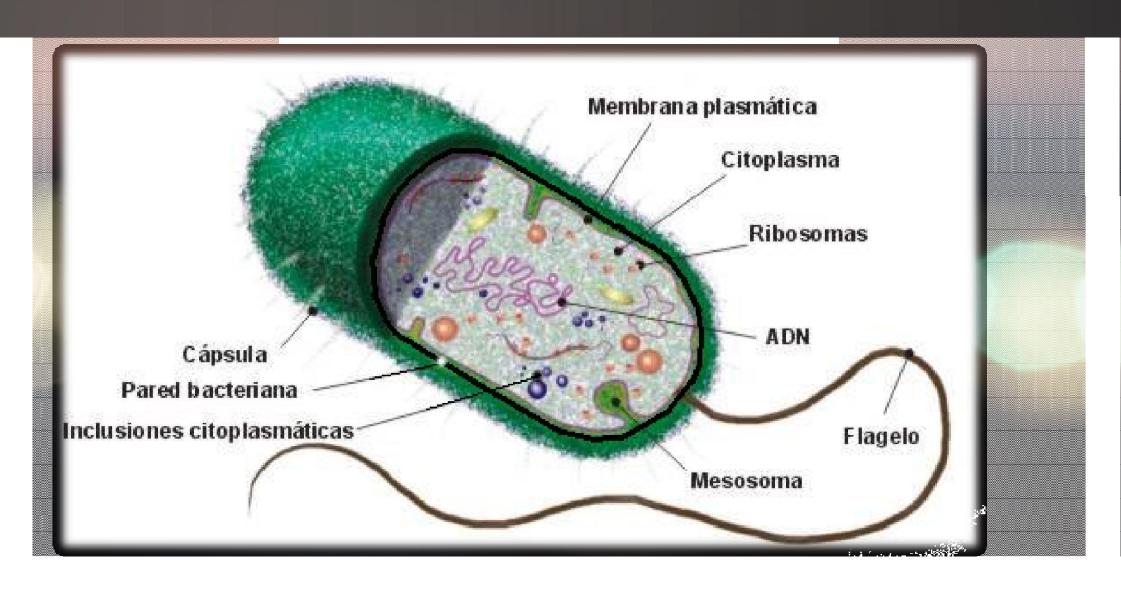
(DVM, PhD Investigadora INIA
Presidenta ECBHM)

Evidencias de Prevalencia de Mastitis por
Gram +




Pilar Folch
/M, PhD. Brand Mana

(DVM, PhD. Brand Manager Rumiantes Boehringer Ingelheim)


Marta Dalmases Una Salud Única

Bacteria: célula procariota

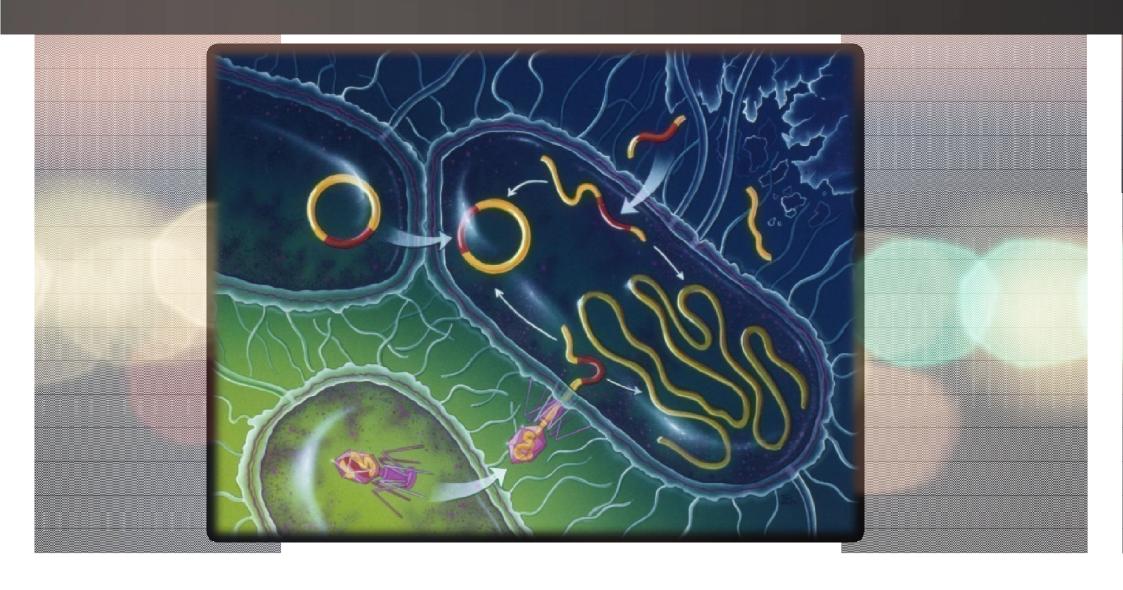
Antibiótico

Fármaco que inhibe el crecimiento de las bacterias o las elimina sin lesionar prácticamente el organismo infectado. Los antibacterianos realizan su acción bacteriostática o bactericida interfiriendo en los mecanismos fisiológicos bacterianos: inhibición de la síntesis de la pared celular, lisis de la membrana celular, inhibición de la síntesis protéica e inhibición de la síntesis de los ácidos nucleicos

¿Cómo actúan los antibióticos?

Agentes Bacteriostáticos Inhiben el crecimiento y multiplicación de las bacterias, pero no los matan. Requieren de la intervención del sistema inmunitario

Agentes Bactericidas provocan la lisis y muerte de los microorganismos


Pero par Dosis ad

cuado!!!

¿Qué es la resistencia?

¿Cómo se genera la resistencia?

¿Cuál es la amenaza?

- En toda Europa alrededor de <u>33.000 personas mueren</u> cada año como consecuencia de las infecciones hospitalarias causadas por bacterias resistentes.
- Si no se toman medidas de carácter urgente, se estima que en <u>35 años</u>, el número de muertes atribuibles a las infecciones multirresistentes alcanzará las <u>390.000 al año</u> en toda Europa -unas 40.000 muertes anuales en Españay la resistencia desbancará al cáncer como primera causa de muerte.

Fuente: PRAN 2019 - 20

Declaración de Berlín G20

23. Antimicrobial Resistance (AMR) is a current and increasing threat and challenge to global health and development of all countries with different consequences regarding hospital-acquired and community acquired infections. AMR leads to prolonged treatments, longer hospital stays, higher medical costs, increased mortality and loss of productivity. AMR causes additional suffering for patients and financial pressure on health systems. If current trends continue, infections, including Tuberculosis (TB), can become untreatable, common surgical procedures, and some complex interventions such as organ transplantation or cancer chemotherapy will become far more difficult or even too dangerous to undertake. Thus, AMR has the potential to have a major negative impact on public health as well as on growth and global economic stability

¿Qué podemos hacer nosotros?

- Ser conscientes del problema
- Diagnosticar adecuadamente: analíticas siempre que sea posible
- Aplicar los tratamientos efectivos y durante el tiempo necesario
- Mejorar la higiene y manejo de los animales
- Ser estrictos con la receta
- Asegurar que los AM se aplican según posología y vía de administración adecuada
- Si no tienes analíticas, usa los datos epidemiológicos de tu área
- Selecciona siempre que puedas un antibiótico de espectro reducido para evitar generar resistencias

Familias de antibióticos

- βLactámicos,
- Macrólidos,
- Aminoglicósidos

Actividad antimicrobiana

- · Bactericida/Bacteriostática,
- · CMI/CMB.
- Tiempo/Concentración Dependiente

Mecanismo de acción

- Pared celular
- Síntesis de ADN
- Síntesis proteica

Residuos

- LMR
- Medioambientales

Galénica

- Tamaño de partícula
- Solución
- Dispersión
- RTU

Espectro de acción

- Extendido
- Reducido

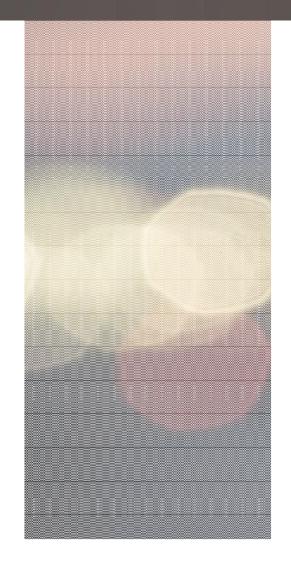
Conocer adecuadamente los antibióticos

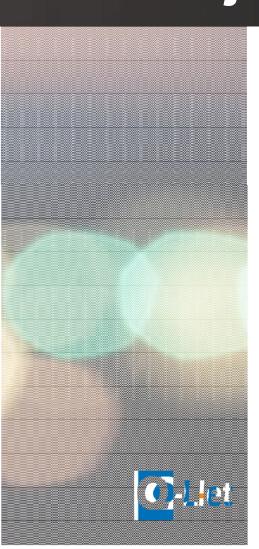
conocimiento del antibiótico

Uso CORRECTO del antibiótico

Al igual que las personas, cuando los animales sufren una infección, tienen derecho a acceder a los medicamentos adecuados. El uso de antibióticos en animales sigue siendo esencial para:

Proteger la salud y el bienestar del ganado


Ofrecer a los consumidores alimentos seguros y saludables



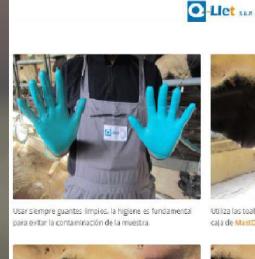
Tratar a los animales y salvaguardar a las familias de la aparición de enfermedades zoonóticas (las que pueden transmitirse de animales a personas).

Oriol Franquesa (QLLET) Mastitis por Gram +: Visión desde la Granja

Preguntas Básicas en Calidad de Leche

¿Cuál es la bacteria implicada?

¿Dónde vive dentro de la explotación?


¿Cómo llega hasta la ubre sana?

¿Cómo puedo resolver al infección?

Bacterias implicadas – Toma de muestras FORMACIÓN Correcta toma de muestras

Inlicio Quienes somos Servicios Enlaces Contacto Español (Español) Q

Limpi eza y desinfecta el pezón, prestando especial importancia a la punta.

Utiliza el tubo estéril incluido en la caja de MastDecide.

Abre el tagón del tubo con especial cuidado para no toca: la parte interna del mismo y ten el tapón en la mano.

Elimina los tres primeros rayos de leche.

Tienes que mantener el tubo de manera obliqua y llenar las 34 del tubo con la leche del cuarto afectado.

Cerra rel tubo, sin tocar la parte interna del tapón para evitar la contaminación de la muestra.

Rotula e identifica el tubo en caso necesario con el número de la vaca y el pecho afectado por ll evar un registiro correcto.

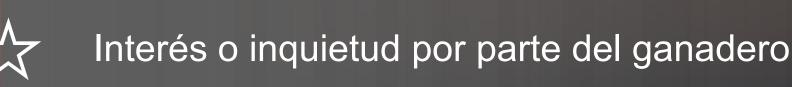
Bacterias implicadas – Toma de muestras Puntos a controlar con regularidad:

¿Dónde se guarda el material?

¿Cada cuánto tiempo revisamos la formación?

Control de contaminaciones

Bacterias Implicadas Cultivo en Granja



Bacterias Implicadas- Cultivo en Granja

Lugar limpio en la explotación

Entender el objetivo del sistema. Ventajas y limitaciones

Un mínimo de casos

Mantenimiento de buenos registros en granja

Bacterias Implicadas- Cultivo en Granja

El cultivo en granja no substituye al cultivo en un laboratorio profesional!

- Ampliar la identificación de los cultivos negativos
- Autocontrol al sistema de cultivo en granja

Bacterias implicadas- Ejemplos

Granja A:

- 350 vacas en lactación
- RCS 130-140
- Cubículos con cama de paja
- Cultivo en granja con triplaca

Severidad	casos	%
leve	113	71,5
moderada	29	18,4
aguda	16	10,1

Resultados	total	%	total
S1 (gram neg)		19	12,0
S2 (Staphylos)		19	12,0
S3 (Streptos)		50	31,6
S2S3		7	4,4
SC		51	32,3
Contaminada		5	3,2
Desconocido		7	4,4
Antibiótico	total	%	total
si		85	53,8
no		68	43,0
Desconocido		3	1,9
matadero directo		2	1,3

Llet S.L.P.

Bacterias implicadas- Ejemplos

matadero, ...)

Granja B:

- 800 vacas en lactación
- RCS 210 -240
- Cubículos con arena
- Cultivo en granja con triplaca

Cultivo en granja 2018		
Casos totales		439
Total cultivos		317
% correspondencia lab.		79
% coincidencia tratamiento		87
% solo antiinflamatorio	233	53,08
% antibiótico	195	44,42
otros (secar teto,		
	Casos totales Total cultivos % correspondencia lab. % coincidencia tratamiento % solo antiinflamatorio % antibiótico	Total cultivos % correspondencia lab. % coincidencia tratamiento % solo antiinflamatorio 233 % antibiótico 195

11

2,51

Bacterias implicadas- Ejemplos

Granja C:

- 1000 vacas en lactación
- RCS 170 -190
- Cubículos con CaCO₃
- Cultivo en granja con Mastdecide®

Cultivo en granja 2019

Casos totales		160
Total cultivos		146
% solo antiinflamatorio	103	70,5
% antibiótico	43	29,5

Granja D:

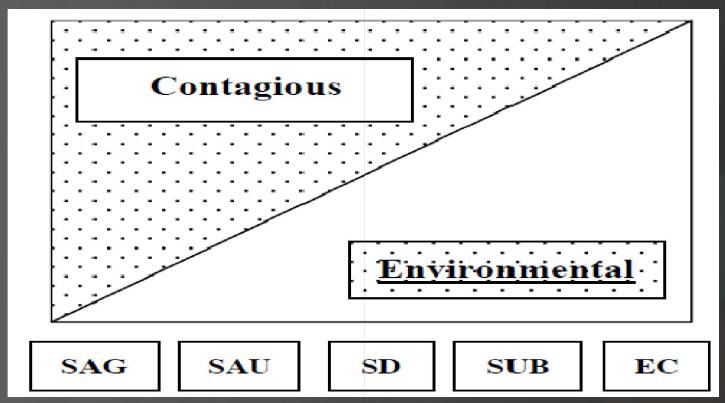
- 350 vacas en lactación
- RCS 170 -190
- Cama fría con serrín
- Cultivo en granja con Mastdecide®

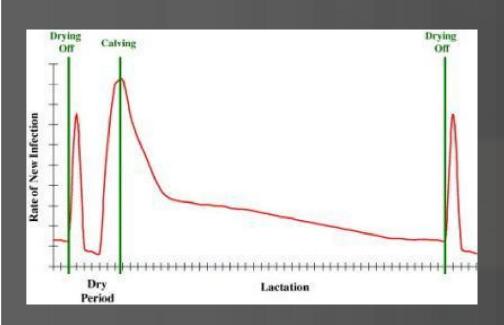
Cultivo en granja 2019

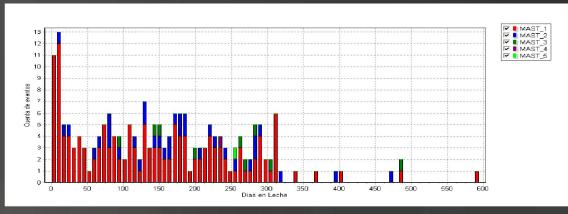
Casos totales		108
Total cultivos		103
Gram negativo	45	43,7
Gram positivo	38	36,9
Sin crecimiento	20	19,4

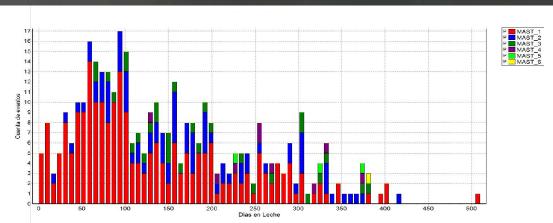
· Ubres infectadas de forma crónica

Interior de pezoneras y otras partes de la máquina de ordeño




(Zadoks et al, 200

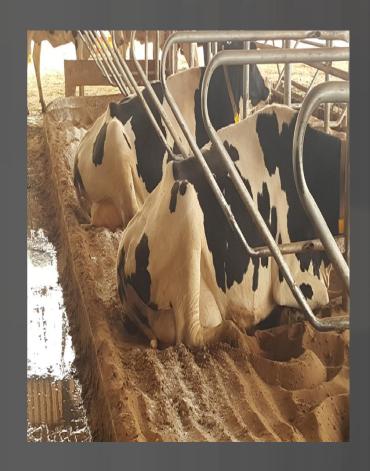

Comportamiento ambiental vs contagioso

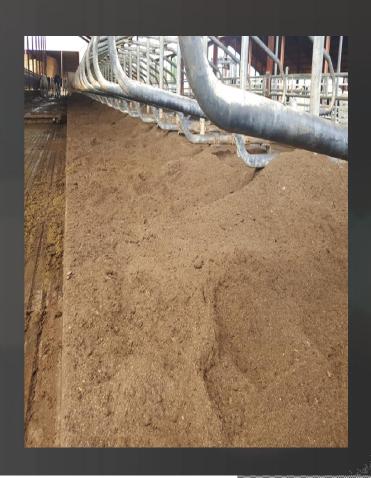


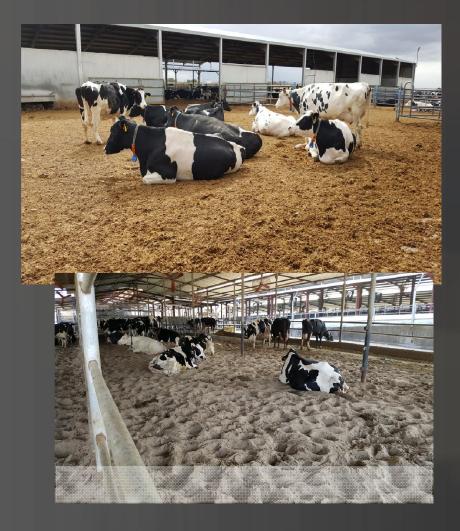
Infección en secado vs infección en lactación

Fuente: Andrew Bradley

Material de encamado



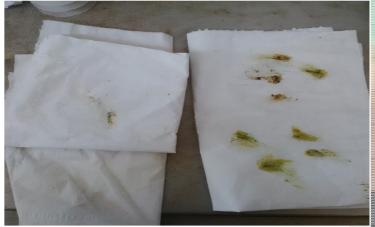


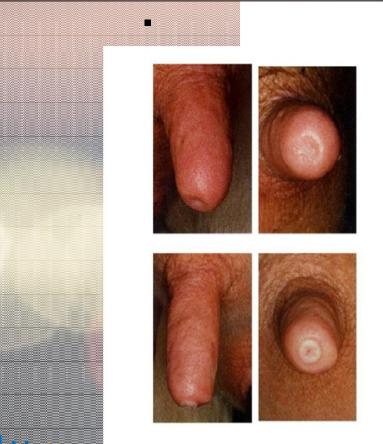


Higiene de la explotación

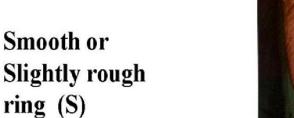
¿Dónde vive dentro de la explotación?

Factores de riesgo:


- Nivel de higiene de todas las instalaciones
- Higiene y limpieza de los pezones en la sala de ordeño
- Funcionamiento de la máquina de ordeño
- Calidad de materias primas en alimentación y agua
- Salud de pezones
- Vacas infectadas de manera persistente



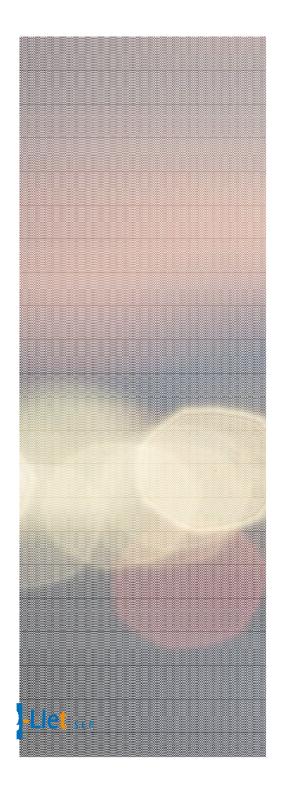
Factores de riesgo:


- Nivel de higiene de todas las instalaciones
- Higiene y limpieza de los pezones en la sala de ordeño
- Funcionamiento de la máquina de ordeño
- · Calidad de materias primas en alimentación y agua
- Salud de pezones
- Vacas infectadas de manera persistente

No ring (N)

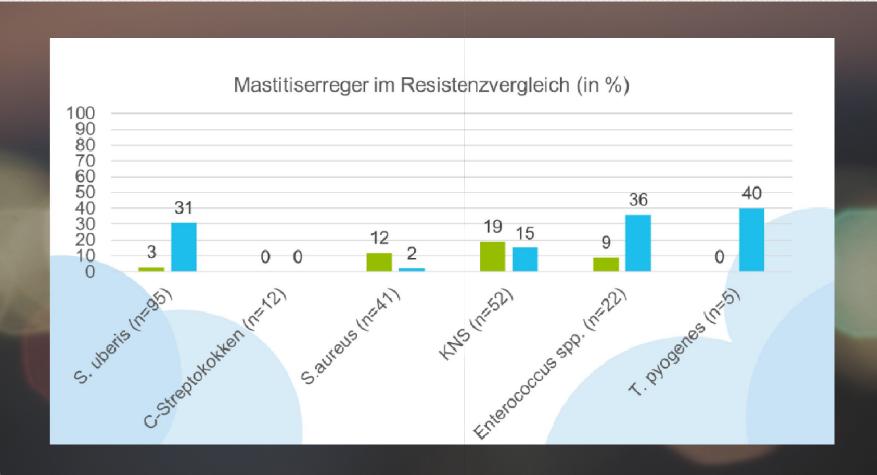
Rough ring (R)

Very Rough ring (VR)

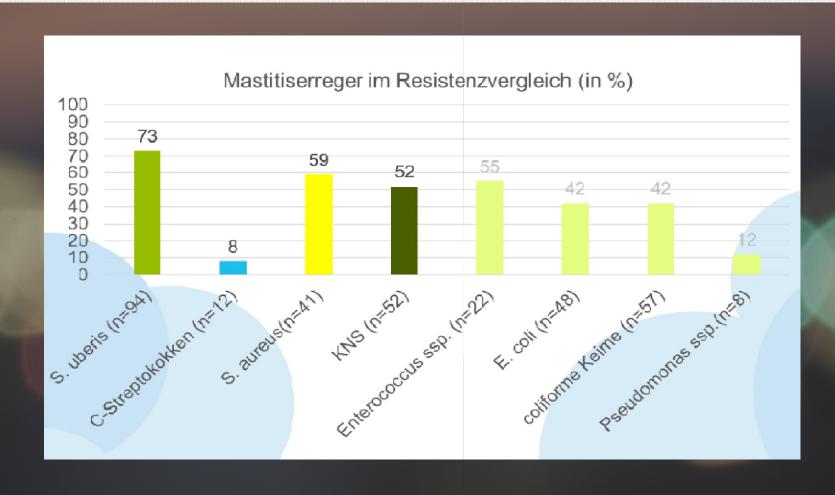

¿Cómo resolvemos la infección?

Puntos iniciales:

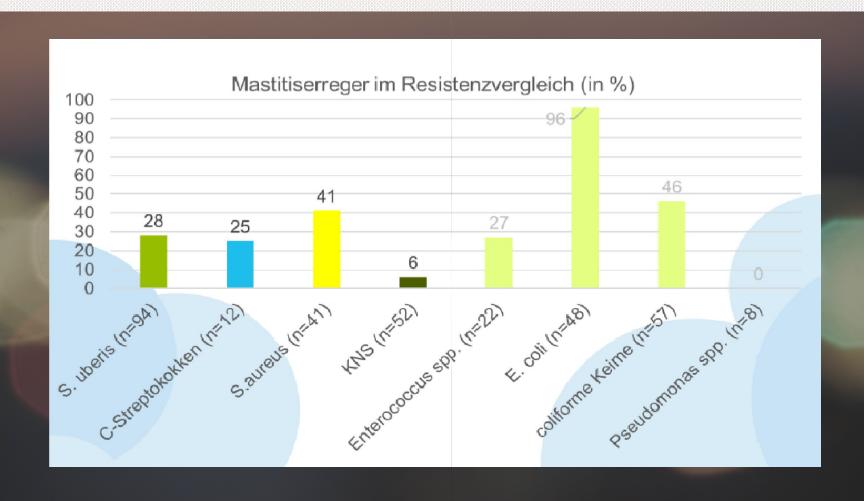
- Definir un plan sanitario en la explotación
 - Definir todas las patologias habituales, nombre del tratamiento, dosis, duración, via adm., tiempo de espera.
- Definir tratamientos de 1^a y 2^a elección
- Mantener buenos registros para evaluación de resultados
- Árbol de decisiones


MAMITIS CLÍNICA Moderada Aguda Leve - Leche anormal Leche anormal Leche anormal Con inflamación Sin inflamación Mucha inflamación - Bajada leche <15% Bajada leche > 15% - Vaca afectada o no TOMAR MUESTRA - TOMAR MUESTRA se levanta CULTIVO EN GRANJA (24h) AINE i.m. Hipertónico 2 L AINE Marbofloxacina - Calcio 0,5 L Duración: 5 días S1 Contaminada Sin crecimiento Gram positivo Gram negativo - AINE, 3 dias Tratamiento 15 elección Tratamiento 25 elección AINE Lincomicina (intramam) Amoxi- Ac Clavulámico (intramam) Quinolona Duración: 5 días Duración: 5 días

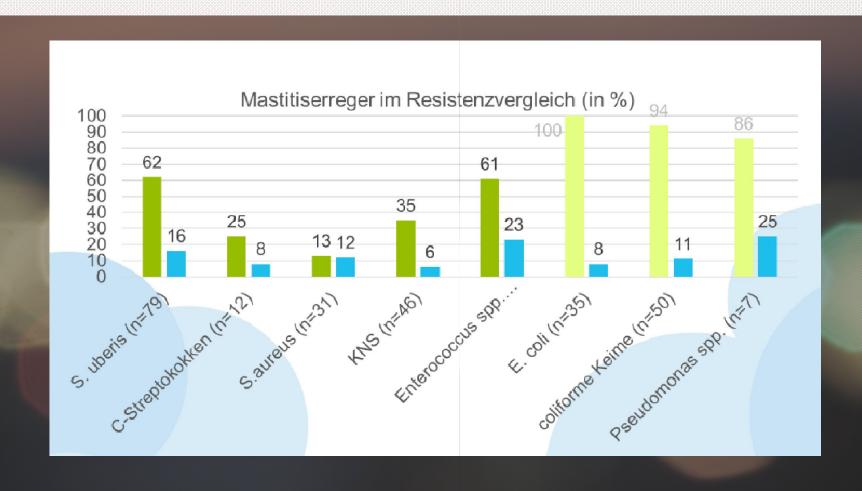
- Antibiogramas
- Experiencia
- Análisis de datos de campo



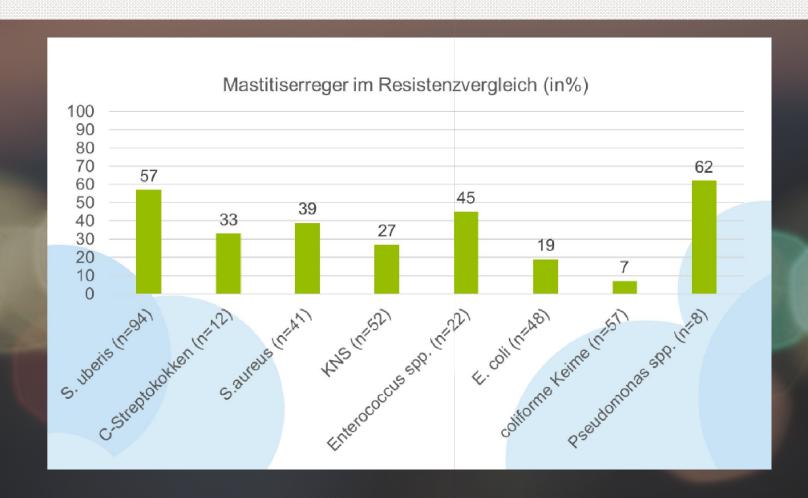
Penicilina y Cloxacilina



Neomicina + Lincomicina

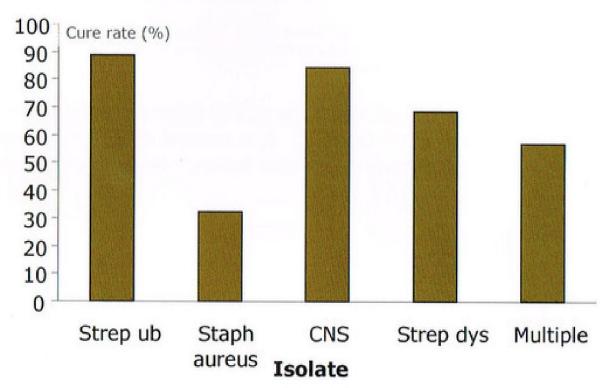


Cefalexina + Kanamicina



Cefapirina (1era gen) o Cefquinoma (4rta gen)

Sulfa + trimetoprim



- Antibiogramas
- Experiencia
- Análisis de datos de campo

Figure 1. Bacteriological cure rate for quarters (n = 659) with clinical mastitis treated with 5 g penethamate or 5 g tylosin daily for 3 days by bacterial isolate at enrolment (McDougall et al 2007^{11})

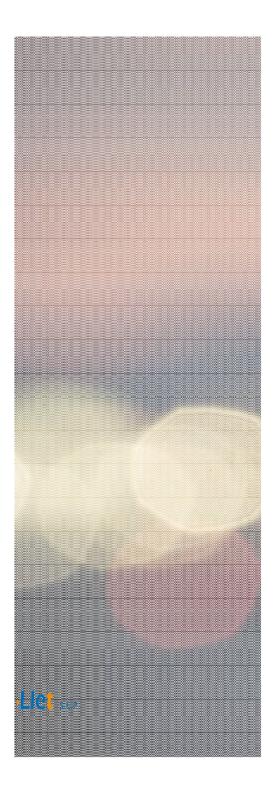


Table 1. Bacteriological cure rate reported from clinical mastitis intervention studies by author, year, pathogen, active and route of treatment.

Author	Year	Pathogen	Active	route	No. 1/4's	Cur rate (%)
Owens et al.11	1988	S. aureus	amoxycillin imam + pen parenteral	combined	40	25
	1988	S. aureus	amoxycillin	imam	35	51
McDougall ¹²	1998	All	Penethamate	parenteral	157	76
	1998	All	Penicillin/Dihydrostreptomycin	imam	185	85
	1998	S. uberis	Penethamate	parenteral	126	82
	1998	S. uberis	Penicillin/Dihydrostreptomycin	imam	151	84
Deluyker et al. ¹³	1999	mixed	lincomycin/neomycin	imam	120	38
	1999	mixed	ampicillin/cloxacillin	imam	112	22
Taponen et al. 14	2003	S. aureus	procaine pen + pen/neom	combined	86	79
	2003	S. aureus	procaine pen	parenteral	41	56
	2003	S. aureus	spiramycin	parenteral	15	33
	2003	S. aureus	amox/clav + amox/clav/pred	combined	24	33
Hoe and Ruegg ¹⁵	2005	Mixed	pirlimycin	imam	133	38
McDougall et <i>al.</i> ¹⁶	2007	All	Penethamate	parenteral	325	82
	2007	All	Tylosin	parenteral	334	84
	2007	S. uberis	Penethamate	parenteral	253	88
	2007	S. uberis	Tylosin	parenteral	235	90
	2007	S. aureus	Penethamate	parenteral	18	33
	2007	S. aureus	Tylosin	parenteral	22	32
McDougall et al.17	2007	All	penicillin	imam	230	75
,	2007	All	cefuroxime	imam	219	70
	2007	All	Penicillin/Dihdyrostreptomycin	imam	248	76
	2007	S. uberis	penicillin	imam	117	91
	2007	S. uberis	cefuroxime	imam	92	95
	2007	S. uberis	Penicillin/Dihdyrostreptomycin	imam	115	96
	2007	S. aureus	penicillin	imam	48	33
	2007	S. aureus	cefuroxime	imam	51	28
	2007	S. aureus	Penicillin/Dihdyrostreptomycin	imam	60	38
Bradley & Green ¹⁸	2009	mixed	cephalexin/kanamycin	imam	236	37
	2009	mixed	cefquinome	imam	144	38
	2009	mixed	cefoperazone	imam	111	22

AUTOR	ANTIBIÓTICO	BACTERIA	CONTROL		TEST	
			días	% cur	días	%cur
Hillerton et al 2002	Penetamato, DHestreptomicin a, Framicetina	Strep uberis	3	79	6	100
Oliver et al 2003	Pirlimicina	Strep uberis	2	58	5	69
Oliver et al 2003	Pirlimicina	Strep uberis	2	58	8	80
Oliver et al 2004	Ceftiofur	Strep uberis (experimental)	2	43	5	88
Truchetti 2011	Ceftiofur	S. aureus Streptococcus Total	2	0 64 32	8	47 82 61

Efficacy of standard vs. extended intramammary cefquinome treatment of clinical mastitis in cows with persistent high somatic cell counts

Jantijn M Swinkels¹*†, Volker Krömke

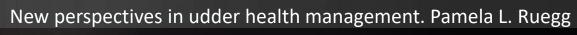
- Mamitis clínicas en un sólo cuarto con alto RCS por al menos 2 meses
- Tratamientos 1,5d y 5d con **cefquinoma**
- 115 **Strep uberis** y 32 **Staph aureus**
- -2 cultivos post-tratamiento a 14 y 21 días

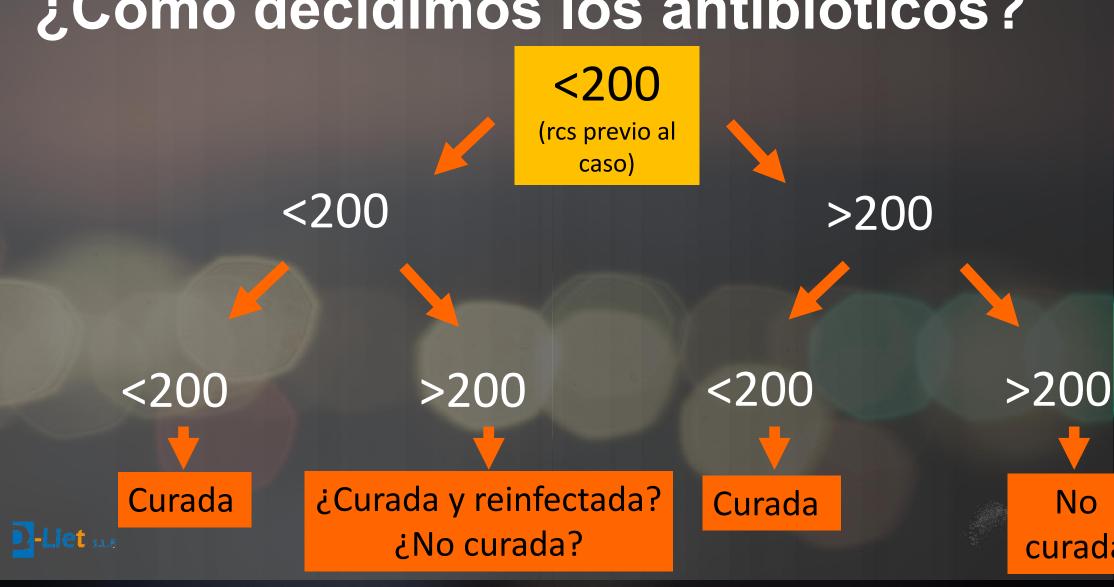
Table 3. Descriptive data of bacteriological cure (%) by bacterial group after standard (n=203), 1·5-d, and extended (n=206), 5-d, cefquinome treatment of 409 clinical mastitis cases in cows with persistent high SCC from 20 different herds in Germany. Numbers of cures divided by the number of cases are presented in parenthesis

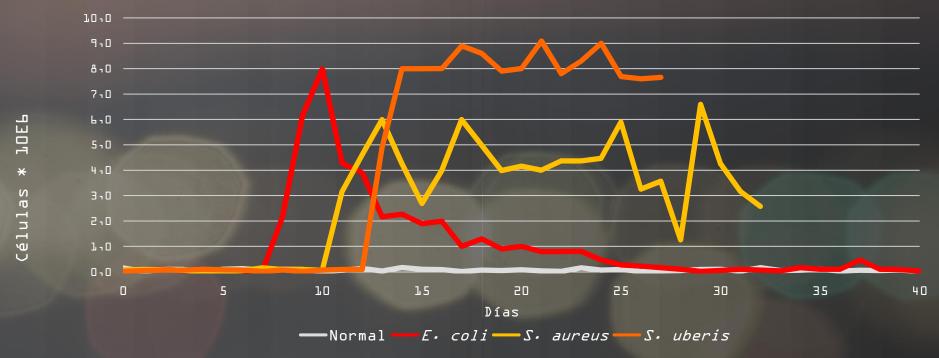
Bacteriological cure

Bacterial category	Standard	Extended
Enterobacteriaceae† Esch. coli Staphylococci‡ Staph. aureus Streptococci§ Str. uberis Other¶	81 (39/48) 93 (25/27) 65 (26/40) 64 (14/22) 65 (50/77) 64 (36/56) 79 (26/33)	83 (38/46) 85 (23/27) 58 (15/26) 40 (4/10) 83 (63/76) 81 (48/59) 83 (34/41)
Total	72 (127/177)	78 (135/172)

- Muchas veces estos datos no cuadran con nuestra realidad en el campo
- ¿Como analizar nuestros propios datos?
- Es muy complicado hacer una correcta evaluación de los tratamientos:
 - Bacteria implicada
 - Primer caso o caso recurrente
 - Historial previo de rcs
 - Num lactación
 - Dias en leche
 - Etc.




- Asumimos un margen importante de error a cambio de la simplicidad o la practicidad
- A partir de datos de:
 - Mastitis clínicas
 - RCS individual de control lechero



Indicator	Calculation ^b	Suggested Goal
Incidence Rate	Sum of first cases occurring in the appropriate time period ^a divided by average number of lactating cows in the same time period ^c	< 25 new cases per 100 cows per year
Proportion of cases scored 3 (severe)	Number of severity score 3 cases occurring divided by the total number of cases occurring	5%–20% of total cases
Proportion of cases that die	Number of cows experiencing mastitis cases that resulted in death divided by the total number of cows experiencing mastitis	2% ^d
Proportion of cases requiring treatment changes	Number of cases that have the initial treatment protocol changed or supplemented because of nonresponse divided by the total number of detected cases ^f	<20% ^e
Proportion of cases that are recurrent (second or greater treatment)	Number of cows with second or greater case of mastitis occurring >14 days post treatment divided by the total number of cases of mastitis	<30%
Proportion of cows with >1 quarter affected	Number of cases with 2+ quarters affected divided by the total number of cases	<20% ^d
Number of days milk discarded (per case)	Sum of the number of discard days for the time period divided by the total number of cases	Dependent on recommended treatment protocol
Percent of herd milking with <4 quarters	Number of cows milking with <4 quarters ^g divided by the number of lactating cows	<5%

- A partir de RCS individual puede ser muy inconsistente y muy errático

Curación bacteriológica a los 14 o 21 días post tratamiento

Resumen

Identificar el germen que nos causa problemas dentro de la explotación

Reducir mediante manejo su presencia en la granja. Maximizar la higiene

Controlar los factores de riesgo que llevan a una infección y desarrollo de la mamitis clínica

Elaborar un plan de diagnóstico en granja para optimizar el uso de antibióticos orientado a los Gram positivos

Evaluación continua de resultados (asumir margen de error)

qllet@qllet.com www.qllet.com

Anna Jubert (ALLIC) Herramientas de Diagnóstico en Granja

Cultivo bacteriológico en granja como herramienta de apoyo en la toma de decisiones del tratamiento de las mastitis clínicas bovinas

Veterinario: medidas para reducir el uso de antibióticos en animales de producción. Situación actual

Desinfección de los pezones después del ordeño

Mantenimiento periódico del equipo de ordeño

Tratamiento precoz de TODOS los casos de mastitis clínica

Eliminación de vacas crónicas

Tratamiento de TODOS los cuarterones de las vacas en el momento del secado

Veterinario: medidas para reducir el uso de antibióticos en animales de producción Nuevos enfoques

Tratamiento selectivo de los casos de mastitis clínica

Tratamiento selectivo en el secado

Medidas de higiene exhaustiva y estrategias de buenas prácticas : Reducción de la incidencia de infección

Promover la utilización de pruebas diagnósticas rápidas para identificación de patógenos y reducir uso de antimicrobianos

Evitar la alimentación de los terneros con leche de deshecho de vacas tratadas con antimicrobianos

Veterinario: medidas para reducir el uso de antibióticos en animales de producción. Tratamiento selectivo mastitis clínica

Mastitis Clínica: Es necesario un tratamiento RÁPIDO y ORIENTA 🔎

agnóstico laboratorial = 72 horas (envío y siembra),

permiten esperar el resultado para ar una terapia antibiótica orientada

Implantación de terapia antibiótica de amplio espectro

A menudo resulta un tratamient inadecuado, casi el 50% de los casos de MC se tratan de mane inapropiada o innecesaria.

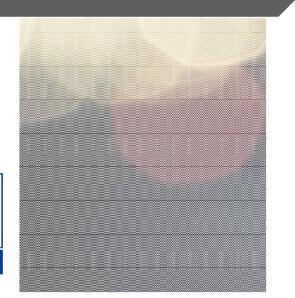
- .- Gasto inútil de medicamentos
- .- Aparición de resistencias
- .- tiempos de espera en leche largos

Veterinario: medidas para reducir el uso de antibióticos en animales de producción. Tratamiento selectivo de los casos de mastitis clínica

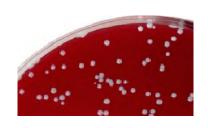
Se ha demostrado que en el caso de mamitis clínica leve o moderada causada por bacterias gram - como E.coli, no mejoran significativamente las tasas de curación. (Barlow,2011;Suojala et al.,2013;Persson et al.,2015)

Además las IMI causadas por levaduras, Prototheca spp., Mycoplama spp o casos sin crecimiento bacteriano en la investigación microbiológica convencional no justifica ningún tratamiento terapéutico (Roberson et al.,2004; Hoe y Ruegg,2005; Lago et al.,2011; Roberson,2012)

Sin embargo, el tratamiento antimicrobiano de las inflamaciones de la ubre causadas por bacterias gram+, especialmente Streptococcus o Stahylococcus puede mejorar significativamente las tasas de curación bacteriológica (Roberson, 2012)


Veterinario: medidas para reducir el uso de antibióticos en animales de producción. Tratamiento selectivo de los casos de mastitis clínica

Tenemos herramientas para rápida diferenciación del grupo de patógenos en 12 a 24 h.


Permite tomar decisiones

CULTIVO EN GRANJA

¿Qué buscamos?

Veterinario: medidas para reducir el uso de antibióticos en animales de producción: Cultivo en granja: ¿Qué nos aporta?

Terapia racional responsable

Exigencia en un futuro próximo

Nos va ayudar a <u>DECIDIR</u> cual será el <u>TRATAMIENTO</u> <u>de</u> elección

"CULTIVO para TRATAR"

Ni mucho menos se va a llegar a un DIAGNÓSTICO ESPECÍFICO

(identificación precisa)

No remplaza al Laboratorio de diagnóstico habitual:

"CULTIVO para DIAGNOSTICAR"

Nos permitirá un TRATAMIENTO TEMPRANO de la infección sin arriesgar la salud y el bienestar de los animales. ELECCIÓN RESPONSABLE DEL ANTIBIÓTICO,

Terapia dirigida, consistente y con criterio

Determinar la GRAVEDAD de la mastitis clínica: GRADO 1 (leve), GRADO 2 (moderada), GRADO 3 (Grave)

Did you know that not all clinical mastitis cases has to be treated with antibiotics. In up to 60% of mastitis cases, cows are classified as either Grade 1 or Grade 2 and as such other form of treatment is suitable.

En los resultados del CULTIVO, que pueden ser obtenidos dentro de las 24 horas: las decisiones de tratamiento se basan en gran medida en la distinción entre crecimiento gram+, crecimiento gram- y ausencia de crecimiento (Lago et al., 2011; Cameron et al., 2014).

Permite realización de tratamiento justificado

Reducción del uso no adecuado de antibióticos

Minimización del consumo de antibióticos

Más implicación por parte de los ganaderos en la salud de la ubre y en el uso de AB

Cultivo en Gran

Puede llegar a reducir el uso de antimicrobianos en un 50%.

(2011, J.Dairy Sci.94:4457-4467, Lago et al)

Menos leche descartada

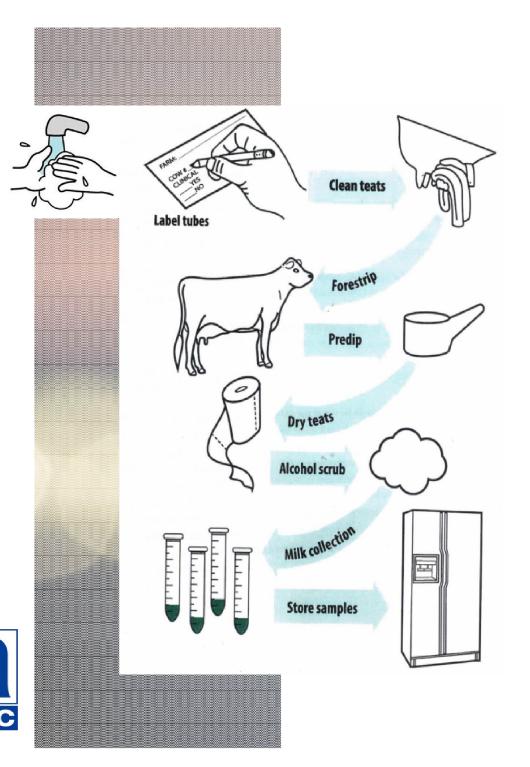
Tratamiento RACIONAL, en línea con las directrices gubernamentales

Relación entre GANADERO y VETERINARIO: FORMACIÓN:

Toma de muestra aséptica

Instrucciones cultivo en granja

Protocolos de actuación


Toma de muestra de leche del cuarterón

Buenas prácticas y Consejos

Zona de Iboratorio Material y equipamiento

Siembra e incubación. Eliminación de residuos

Lectura e interpretación

Cultivo en Granja: Procedimiento Objetivo: obtener muestras asépticas

Toma de muestras del cuarterón

Lavarse las manos y utilizar guantes desechables antes de cada muestra

Desechar 3-4 chorros para eliminación de bacterias del canal y observación características de la leche

Rotular el tubo de muestras (Fecha/Granja/#vaca/cuarterón)

Sumergir cuarterones en desinfectante pre-ordeño durante 30 segundos

Cepillar la suciedad, pelo de la ubre y restos de cama o materia orgánica. Lavar, aclarar y secar la ubre

DD = delantero derecho DI = delantero izquierdo TD = trasero derecho TI = trasero izquierdo

Secar pezón con papel de un solo uso

Toma de muestras del cuarterón

Limpiar punta pezón con algodón/gasa alcohol 70% (uno por cuarterón). De los pezones más alejados a los más cercanos

Abrir tubo antes de la toma de muestra, mantener en horizontal, sostener tapón con una mano. No tocar interior del tubo. Dirigir 1-2 chorro pezón, inclinando 45ºel tubo hasta llenarlo a la mitad. Volver a tapar el tubo

Poner tubo de muestra en hielo o nevera hasta siembra. Si ésta no puede hacerse antes de 24h, congelar

Desinfectar o cambiar guantes para tomar siguiente muestra

Errores comunes en el muestreo Buenas prácticas

Tomar la muestra antes del tratamiento con antibiótico

No mezclar muestra de varios cuarterones afectados (recoger leche de cuarterones individuales)

Evitar contaminación ambiente

- Pezón no suficientemente limpio
- Manos sucias
- Tubo toma de muestra abierto antes de tiempo

Errores comunes en el muestreo Buenas prácticas

Evitar contaminación de la muestra con desinfectante

- No habría crecimiento
- Sucede cuando no se seca bien el pezón o si desinfectante queda en los guantes

Si <5% muestras individuales contaminadas = Buena técnica de muestreo. Sino revisar

- Técnica de muestreo
- Manipulación de muestras
- Técnicas de cultivo

Formar al personal de la sala de ordeño

Consejos

En la toma de muestras

Tomar la muestra con la ubre llena

Será más fácil y menos probable que se contamine

Tomar la muestra en sitio lo más limpio possible

Lugar más óptimo es en la sala de ordeño

Poner muestra en frío lo antes possible

Menos de una hora

Cambiarse de ropa si hay estiércol (ojo con las mangas)

Ojo con las mangas

Usar guantes y desinfectar de muestra a muestra

Muestras enviadas a laboratorio de referencia para prueba confirmatoria

Cultivo en granja

EL LABORATORIO. requisitos

Dedicar zona de la explotación a tareas de laboratorio

- Superficie de fácil limpieza y desinfección
- Sin corrientes de aire
- Sin oscilaciones de temperatura

Material

- Incubadora a 37° con termómetro de fácil lectura para monitorear
- Guantes y escobillones o micropipetas estériles
- Bolsa sellada para residuos
- Alcohol 70°, lejía diluida

37°C +/- 2°C

Cultivo en granja: siembra e incubación

esinfectar zona de trabajo

Jsar guantes. Desinfectar entre muestra y muestra

Si la muestra está congelada, dejar que se descongele completamente en la nevera

Jsar hisopo o micropipeta nuevo para cada nuestra

os residuos generados (placas/tubos/pipetas) se consideran de riesgo biológico potencial

Agitar suave: invertir el tubo 15 veces

Rotular placa/tubos del kit

Si se siembra con hisopo: saturarlo de leche (8-10 seg)

No tomar leche grumosa ni con coágulos

Sembrar en cada medio. Antes de sembrar en cad sección de la placa o tubo, volver a sumergirlo en leche.

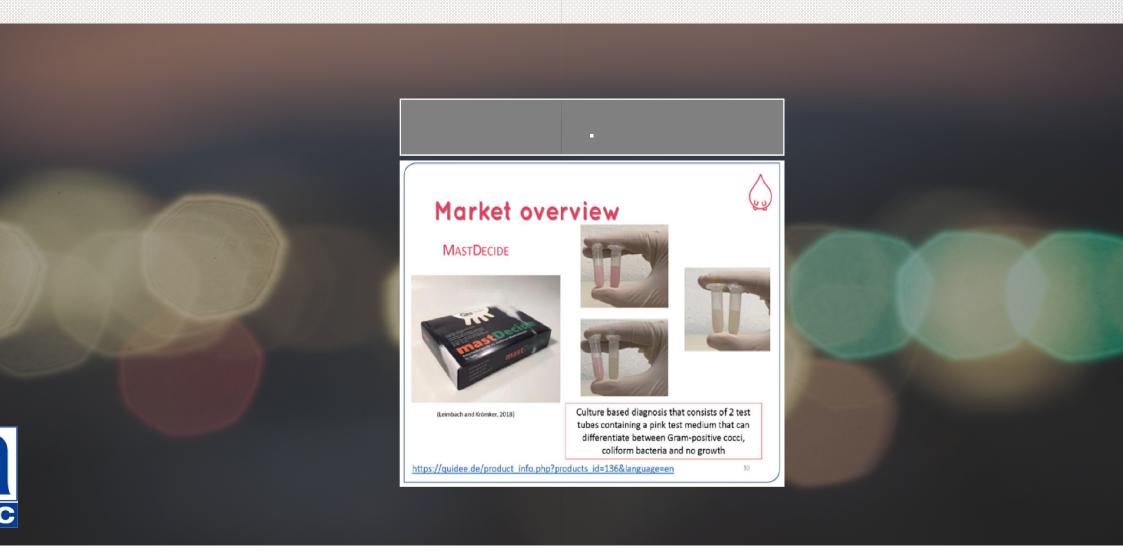
Placa en incubadora, pre-ajustada a 37°C, boca abajo

Congelar las muestras

Desiriabajo

Cultivo en granja: diferentes tests

Biplaca o triplaca



Cultivo en granja: diferentes tests

Tubo

Cultivo en granja:

Diferentes tests

Evaluar en función de

- Rapidez (12/24h)
- Simple
- Fácil interpretación
- Fecha caducidad larga
- Identificación principales patógenos
- Precio

Cultivo en granja:

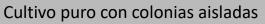
Diferentes tests

Parámetros a evaluar en la validación

- Sensibilidad: Capacidad del método de detectar la presencia del microrganismo objetivo. Si el objetivo del test es la detección de GRAM +, e tendrá una alta sensibilidad si es capaz de detectar correctamente los gram positivos
- Especificidad: Capacidad del método de detectar la no presencia del microrganismo objetivo. Si el objetivo del test es la detección de GRAM +, el tendrá una alta especificidad si es capaz de dar como negativo la no presenc (ausencia) de gram positivos
- Capacidad discriminar contaminación
- Capacidad discriminar crecimiento mixto

		CULTIVO EN GRANJA	
		RESULTADOS POSITIVO	RESULTADOS NEGATIVOS
MÉTODO DE REFERENCIA	MUESTRA POSITIVA (TOTAL 100)	90 SENSIBILIDAD	10 FALSOS NEGATIVOS ANIMALES SUBTRATADOS
(TOTAL 200)	MUESTRA NEGATIVA (TOTAL 100)	20 FALSOS POSITIVOS ANIMALES SOBRETRATADOS	80 ESPECIFICIDAD

Cultivo en granja: diferentes tests


El veterinario junto con el ganadero evaluarán el test y en función de los resultados aplicarán el protocolo de actuación

CULTIVO CLÁSICO: Medio de cultivo: Agar Esculina, Incubación: 37ºC en condiciones de aerobiosis, Lectura: 24 y 18 horas, Interpretación de resultados:

CULTIVO PURO:

si 1 o 2 morfotipos están oresentes en la placa de agar sangre

Cultivo puro con colonias poco aisladas

Cultivo puro mayoritario con subcul

MUESTRA CONTAMINADA:

si tres o más tipos de pacterias están presentes

CONTAMINADAS < 5%

Muestra contaminada

MUESTRA SIN CRECIMIENTO:

SIN CRECIMIENTO (25-40%)

puede indicar que el cuarto no fue infectado	verdaderos nega
el cuarto estaba infectado pero el sistema inmune de la vaca ya ha respondido a la infección y elimina las bacterias antes de tomar la muestra: esto es común en infecciones Gram -	verdaderos nega
errores en la toma de muestra: desinfectante, almacenamiento incorrecto, vaca tratada AB	falso negativo
algún tipo de bacterias no crece en las condiciones estándar de incubación (por ejemplo, especies de Mycoplasma o otros microorganismos anaerobios)	falsos negativos

CULTIVO CLASICO CONVENCIONAL TEST EN GRANJA					
CULTIVO para DIAGNOSTICAR		CULTIVO para TRATAR			
CLASIFICACION	RESULTADO	RESULTADO	LIMITACIONES		
cocos	Staphylococcus aureus	Gram positivos (GP)			
GRAMPOSITIVOS	Staphylococcus coagulasa				
	negativos (SNC)				
	Streptococcus uberis		La mayoría de kits son útiles para la diferenciación de	ara la diferenciación de categorías amplias (G	
	Enterococcus spp.		y GN), pero son menos fiables cuando se aplica un di	. ,	
	Streptococcus dysgalactiae		género y especie.	agnoonoo a mvor ao	
	Streptococcus agalactiae				
	Otros Streptococus				
BACTERIAS	Escherichia coli	Gram negativos (GN)			
COLIFORMES	Otras Bacterias coliformes				
PATÓGENOS DE	Pseudomonas spp.	No crecimiento	Hay microorganismos tardíos (necesitan más tiempo	NO AFECTA AL OBJETIVO	
CRECIMIENTO	Corynebacterium spp.		para su crecimiento): Pseudomonas,		
LENTO	Trueperella pyogenes		Corynebacterium, Streptococcus de crecimiento		
			tardío, etc.	(TRATAMIENTO MO	
Otros PATÓGENOS	Bacillus spp.	No crecimiento	Al utilizar medios selectivos para la diferenciación	NO AFECTA AL	
	Prototheca spp		de Gram positivos o Gram negativos hay	OBJETIVO	
	Levaduras		microorganismos que no crecerán, como Prototheca,	(TRATAMIENTO MO	
	Nocardia		Levaduras, Nocardia, Bacillus		
INFECCIONES	Infecciones mixtas por cocos gram	Gram positivos			
MIXTAS	positivos	Gram negativos	Hay kits que no pueden reconocer infecciones mixtas		
	Infecciones mixtas por bacterias	depende del kit	(patógenos Gram positivos y Gramnegativos simultán		
	coliformes		(patogonos oram positivos y Oramnegativos simultan	camente)	
	Infecciones mixtas no uniformes				
CONTAMINADO	Contaminado	depende del kit	Hay kits que no pueden discriminar muestras de leche	contaminadas Algun	
			de ellos, en este caso obtendremos como resultados	_	
			de chos, en este caso obtendremos como resultados	OI O OIV.	
NO CRECIMIENTO	No hay la bacteria/desinfectante/	No crecimiento			
	bacterias anaerobias (Mycoplasma)				

Sistemas de biplaca y triplaca del cultivo fácil Minnesota

- http://dairyknow.umn.edu/topics/milk-quality/minnesota-easy-culture-system-user-s-g
- Minnesota (Ref. 2014 J.Dairy Sci.97:3648-3659)

Lectura e interpretación

Biplaca

- Crecimiento /no crecimiento
- Gram + / Gram -
- Presencia S. aureus

Triplaca

- Crecimiento /no crecimiento
- Gram + / Gram -
- Clasificación estafilococo y estreptococo
- Presencia S. aureus

Pros

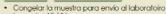
- Visión de colonias y su morfología,
- Discriminación de muestras contaminadas
- Discriminación de crecimiento mixto

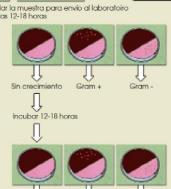
Contras

- Caducidad corta: las placas se pueden secar
- Al utilizar medios selectivos para la diferenciación de Gram positivos o Gram negativos hay microorganismos que no crecerán, como Prototheca, Levaduras, Nocardia, Bacillus. NO AFECTA AL OBJETIVO (TRATAMIENTO MC)

Estos sistemas son menos fiables para llegar a los niveles más detallados de diagnóstico distintas de S.aureus, por ejemplo otras especies de Staphylococcus, Strep. uberis, Strep. dysgalactiae, E. coli, Klebsiella ... Minnesota (Ref. 2014 J.Dairy Sci.97:3648-3659)

Minnesota Easy® Culture System User's Guide





- Tomar una muestra en un tubo estéril Identificar la muestra con nº de vaca y
- cuarto afectado

Triplaca VetoRapid®

- Selectivo Gr (E.Coli vs coliforms) lectura 8-16h
- Selectivo Estafilococo (S.aureus vs. SCN). Lectura 24h
- Selectivo Estreptococo (S.esculina vs. S esculina neg.) lectura 24-36-48h

Pros

- Visión de colonias y su morfología,
- Discriminación de muestras contaminadas
- Discriminación de crecimiento mixto

Contras

- · Caducidad corta: las placas se pueden secar
- Al utilizar medios selectivos para la diferenciación de Gram positivos o Gram negativos hay microorganismos que no crecerán, como Prototheca, Levaduras, Nocardia, Bacillus. NO AFECTA AL OBJETIVO (TRATAMIENTO MC)

Triplaca VetoRapid®

arios estudios han validado el sistema:

Es una herramienta de diagnóstico que permite la fácil identificación de los patógenos mamarios más comunes causantes de mamitis clínica: E.coli, estafilococos y estreptococos. Ref. 2007, Bradley et al. Veterinary Record 160, 253-258

Es una herramienta que permite una primera y rápida identificación de las cinco causas más comunes de mastitis bovina en condiciones de trabajo en campo: E.coli, S.aureus, S.coagulasa negativos, S.uberis y Enterococcus spp. Ref. 2014, Viora et al., Veterinary Record 175, 89. http://dx.doi.org/10.1136/vr.102499

Evaluation of a culture-based pathogen identification kit for bacterial causes of bovine mastitis

L. Viora, MVB, MRCVS¹, E. M. Graham, MVB, MVM, PhD, MRCVS², D. J. Mellor, BVMS, PhD, DipECVPH, MRCVS², K. Reynolds, MIBMS² P. B. A. Simoes¹ and T. E. Geraghty¹

Es una herramienta útil para la diferenciación de categorías amplias (GP y GN), pero es menos fiable cuando se aplica un diagnóstico a nivel de género y

especie. REF. Evaluación de dos testes de cultivo bacteriológico para apoyar las decisiones de tratamiento en mastitis clínicas bovinas – póster, c. 2019.

EVALUACIÓN DE DOS TESTES DE CULTIVO BACTERIOLÓGICO PARA APOYAR LAS DECISIONES DE TRATAMIENTO EN MASTITIS CLÍNICAS BOVINAS - PÓSTER, C. 2019.

Por ANEMBE (Secretaría) I Calidad de Leche

Malcata F, Viora L, Zadocks RN The present study aimed to evaluate the performance of two culture test kits intended to be used on-farm as a diagnostic and treatment decision...

Sistema ACCUMAST®

- Medios selectivos cromogénicos para identificación de patógenos
- Sofisticado permite mayor clasificación de género

Pros

- Visión de clara de las colonias: identificación de las bacterias basado en el color
- Discriminación de muestras contaminadas
- Discriminación de crecimiento mixto

Contras

- Caducidad corta: las placas se pueden secar
- Al utilizar medios selectivos para la diferenciación de Gram positivos o Gram negativos hay microorganismos que no crecerán, como Prototheca, Levaduras, Nocardia, Bacillus. No afecta al objetivo (tratamiento mc)

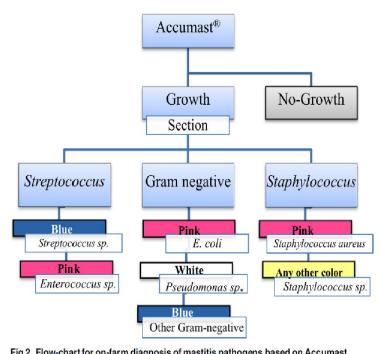
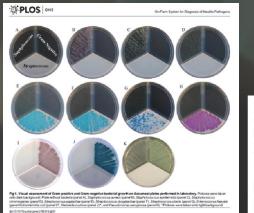



Fig 2. Flow-chart for on-farm diagnosis of mastitis pathogens based on Accumast.

doi:10.1371/journal.pone.0155314.g002

Evaluation of an On-Farm Culture System (Accumast) for Fast Identification of Milk Pathogens Associated with Clinical Mastitis in Dairy Cows

Erika Korzune Ganda, Rafael Sisconeto Bisinotto, Dean Harrison Decte

Sistema PETRIFILM 3M®: 2 placas (films)

- Contaje rápido aerobios (AC)
- Contaje rápido coliformes (CC)

Pros

- Las muestras sin crecimiento son claras ya que el medio AC es un medio no selectivo
- Fácil almacenamiento

Contras

- Su incapacidad para discriminar muestras de leche contaminadas de no contaminadas (no puedes distinguir las colonias por su morfología)
- No puede discriminar el crecimiento mixto no uniforme que contiene grampositivos y gramnegativos del crecimiento gramnegativo (ref. 2014, Mansion-de Vries et al.): casos de MC grampositivos no tratados

Accuracy of 12h-Petrifilm[™]-plates as a rapid on-farm test for evidence-based mastitis therapy on a dairy farm in Germany

Milk production

Comparison of an evidence-based and a conventional mastitis therapy concept with regard to cure rates and antibiotic usage

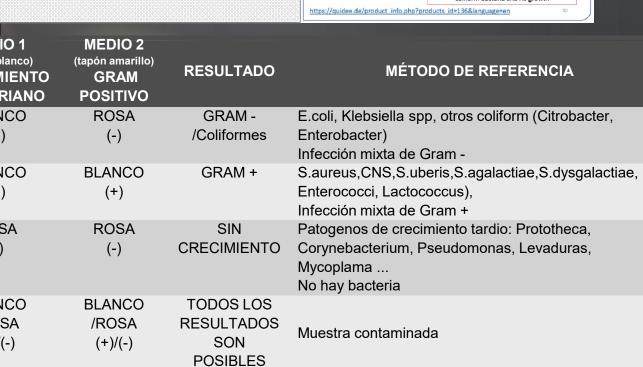
E.M. Mansion-de Vries^{1,2}, J. Lücking^{1,2}, N. Wente¹, C. Zinke¹, M.Hoedemaker², V. Krömker¹

¹ University of Applied Sciences and Arts, Faculty II, Microbiology, Heisterbergallee 12, D-30453 Hannover, Germany ² Clinic for Cattle, Hanover University of Veterinary Medicine, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany

Date submitted:24/02/2016

Date accepted: 06/06/2016

Volume/Page(s): 69/27-32


2018, Krömker et al.; 2016, Mansion-de Vrie 2014 Mansion-de Vrie 2013, Gitau et al. 2012 Roberson et al.; McCarron et al.;

Article in Milchwissenschaft - July 2018

ASTDECIDE®

Cocos grampositivos Bacterias coliformes No crecimiento Bistema cerrado 00µl de siembra No identifica la bacteria

J. Dairy Sci. 101:6357–6365 https://doi.org/10.3168/jds.2017-14198 @ American Dairy Science Association®. 2018.

Laboratory evaluation of a novel rapid tube test system for differentiation of mastitis-causing pathogen groups

S. Leimbach¹ and V. Krömker

University of Applied Sciences and Art, Faculty II, Microbiology, Heisterbergallee 10A, 30453, Hanover, Germany

Krömber et I., J. Dairy Sci. 101: 6357-6365

Pros

- Es una de las pruebas más rápidas para el diagnóstico de grupos de patógenos. Resultados: 12-14h
- Las muestras sin crecimiento son claras
- Fácil de usar y interpretar
- Fácil almacenamiento y larga caducidad (8 meses en refrigeración

Contras

- Posible interferencia con muestras contaminadas.
- No puede reconocer infecciones mixtas no uniformes (patógenos G positivos y Gram negativos simultáneamente)

Conclusiones

El veterinario junto al ganadero evaluarán test de diagnóstico y protocolo de actuación

Calidad de la muestra de leche: garantía éxito para el diagnóstico

- Si más del 40% no hay crecimiento: revisar protocolo toma muestras y kit
- Si hay < 5% muestras/cuarterón contaminadas = Buena técnica
- Enviar muestras a lab de referencia para confirmación del test

Cultivo en granja es una herramienta indispensable para toma de decisiones

- Buena herramienta para la diferenciación de mastitis GP de mastitis no GP pero no reemplaza al laboratorio de diagnóstico habitual
- Ideal como primera actuación pero en caso de repetición de las mastitis, es necesario enviar muestra al laboratorio para realizar una identificación y antibiograma
- No implementar ningún sistema de prueba rápida en rebaños con Mycoplasma spp, Prototeca spp o Trueperella pyogenes

ASSOCIACIÓ INTERPROFESSIONAL LLETERA DE CATALUNYA LABORATORI INTERPROFESSIONAL LLETER DE CATALUNYA

Ctra. Vilassar de Mar a Cabrils, s/n – 08348 Cabrils (Barcelona)
T 93 750 88 56 F 93 750 89 53 - www.allic.org

Susana Astiz (INIA) Evidencias de Prevalencia de Mastitis por Gram +

Eficacia del uso prudente de bencilpenicilina (Ubropen® 600 mg suspensión intramamaria para vacas en lactación, Vetcare OY) y Meloxicam (Metacam® 40 mg/ml solución inyectable para bovino y caballos. Boehringer Ingelheim Vetmedica GmBH) en el tratamiento de mastitis clínica de grados 1, 2 y 3.

Miguel Jimenez SERVET TALAVETA investigador

Carlos Noya SERAGRO investigador

Christian Paniagua GESCAL investigador

Gema Moyano COVAP

Susana Astiz INIA Análisis estadístico v redacción estudio

Patricia de Celis, GESCAL investigadora

Anna Jubert ALLIC

Manuel Cerviño Boehringer Ingelheim Promotor y coordinador del estudio

José Luis Míguez SERAGRO investigador

Mercè Lázara ALLIC

Objetivos

Estudiar la prevalencia de los diferentes grados de mastitis.

Estudiar la prevalencia de los patógenos causantes de mastitis clínica (MC).

Evaluar la tasa de curación clínica de una suspensión intramamaria de penicilina (bencilpenicilina) para vacas en lactación en el tratamiento de mastitis producidas por gérmenes sensibles.

M&M

ESTUDIO DESCRIPTIVO, PROSPECTIVO ALEATORIZADO

Multicéntrico: 5 grupos vet; 14 granjas

Total casos (preliminares): 54

Criterios inclusión: mastitis un cuarterón, primer caso mastitis; sin mastitis 3m antes en lactación anterior si <60DEL; sin antibiótico 60d antes

Gravedad en grados 1, 2,3

Información: vaca, partos, DEL,

Desarrollo: inclusión, toma muestra, tratamiento (Ubropen y Metacam) y seguimiento para el estudio descriptivo

GRAVEDAD DE LAS MASTITIS CLÍNICAS	DEFINICIÓN	
Grado 1	Leche aspecto anormal. Presencia de grumos	
Grado 2	Leche aspecto anormal. Presencia de grumos. Inflamación del cuarterón.	
Grado 3	Leche aspecto anormal. Presencia de grumos. Inflamación del cuarterón. Vaca enferma y fiebre	

Procedencia de las muestras

Resultados descriptivos (estudio español) Datos preliminares

DESCRIPTIVOS

DEL medio= 135,4± 92,11 (10-360); partos= 2,4 ±1,2 (1-5)

48 casos completados hasta dato de curación

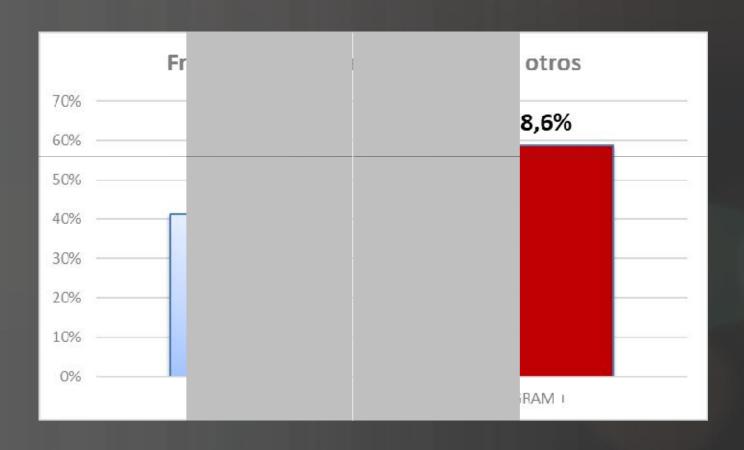
37 muestras con crecimiento, 29 con aislamiento específico e identificación

68,8% de casos se tratan de manera simple (3d; 33/48)...

Cuarterones afectados:

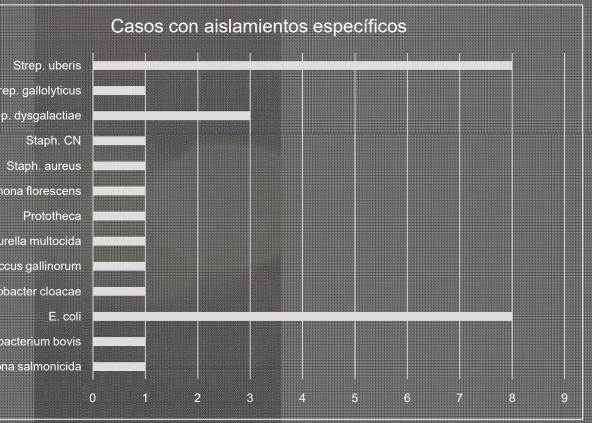
CUARTERÓN	
DD	27,10%
DI	33,30%
TD	14,60%
П	25,00%

Resultados descriptivos


(estudio español) Datos preliminares

Grado de mastitis y bacterias Gram+

- N=48; con aislamiento 29 casos
- El 56,3% (27/48) grado 1 y 41,7% (20/48) grado 2 y 2,1% (1/48) caso grado 3 o grave.
- 58,6% (17/29) causadas por gérmenes Gram positivo.
- 62,5 y 58,3% de los casos de CM con gravedad 1 y 2 fueron gérmenes Gram positivos (Caso grado 3, no fue Gram +).


Resultados descriptivos (estudio español) Datos preliminares

RESULTADOS prevalencia

(estudio español; datos preliminares)

Resultados eficacia

(estudio español) Datos preliminares

Porcentaje de curación global con el tratamiento de Ubropen (y Metacam): 79,2% (38/48)

82,4% de las Gram+ (14/17) dan curación clínica (66,7% en resto de gérmenes; 8/12).

Curación según grado: 74,1% en grado 1 (20/27) y 90,0% (18/20) en grado 2

81,8% (27/33) de las que reciben 3d de tratamiento cura; 73,3% de las de 5d de tratamiento (11/15).

Resultados eficacia (estudio español) Datos preliminares

Sólo se observan dos recaídas (2/38); era caso grado 1 (*Enterococcus gallinorum*; Gram+ y un *Strept. uberis*) sensibles a Ubropen y con tres días de tratamiento ambos; cuarterones delanteros

Resultado de regresión logística: no conseguimos detectar ningún factor como significativamente asociado a la curación o no:

	Las variables no están en la ecuación				
			Puntuación	gl	Sig.
Paso 0	Variables	GRUPO VET	0.661	2	0.719
		GRUPO VET(1)	0.207	1	0.649
		GRUPO VET(2)	0.049	1	0.825
		EXPLOTACIÓN	6.650	3	0.084
		EXPLOTACIÓN (1)	0.525	1	0.469
		EXPLOTACIÓN (2)	6.462	1	0.011
		EXPLOTACIÓN (3)	0.179	1	0.672
		DEL	0.481	1	0.488
		PARTOS	1.838	1	0.175
		CUARTERÓN	2.022	2	0.364
		CUARTERÓN(1)	1.131	1	0.287
		CUARTERÓN(2)	1.750	1	0.186
		GRADO MAMITS(1)	1.750	1	0.186
		TTO INTENSIVO S/N(1)	0.179	1	0.672
		GRAM + (1/0)(1)	0.525	1	0.469
	Estadístico	s globales	13.120	12	0.360

Resultados sensibilidad

(estudio español) Datos preliminares

14 casos con cultivo y determinación de la resistencia a Ubropen: 4 casos específicos de bacterias resistentes (28,6% de resistencias); 2 identificaciones sensibilidad intermedia. Todos de granjas diferentes

- Caso 1: Strep. gallolyticus
- Caso 2: Staph. aureus
- Caso 3: Staph. CN
- Caso 4: Strept. uberis

Otros resultados interesantes: 8 identificaciones de *S.uberis.* 5 sensibles a Ubropen (62,5%); 2 intermedios y 1 resistente (12,5%); además, resistente a clindamicina y eritromicina, tetraciclina en tres casos. Una resistencia a Ubropen.

Factor granja determinante.

Comentarios

Resultados preliminares: son pocos datos.

Estudio epidemiológico, aunque prospectivo:

Pocos casos/granja

Necesitamos más tamaño de muestra y más muestras por granja

Pero...

Estudio de campo holandés (2018)

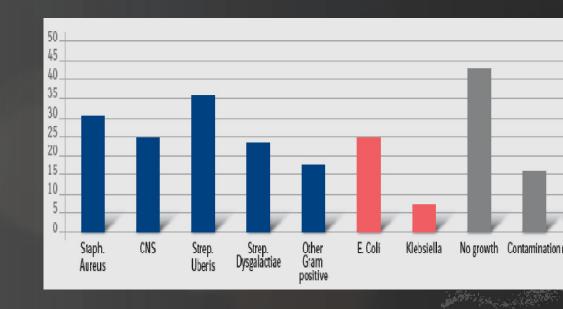
11 equipos veterinarios y 82 granjas

Casos de MC grados 1 y 2 para tratamiento con Ubropen (3 ó 5d)

n=253 (90% grados 1 y 2)

Datos de curación clínica y bacteriológica

Resultados estudio holandés


Prevalencia grados de mastitis : 1, 2 y 3

El 80% de los patógenos causantes de CM de grado 1 (n = 89) y grado 2 (n = 135) fueron gérmenes Gram +.

Tasa de curación global: 81%

Mastitis severity	Grade 1 (n=52)	Grade 2 (n=79)
Mean day of clinical cure in days (min, max)	3,7 (2, 5)	4,0 (2, 6)
Clinical cure (%)	81	81

CONCLUSIONES

- Prevalencia de las mastitis grados
 1 y 2 es muy amplia
- Prevalencia de gérmenes GRAM+ predominante
- Tasas de curación con Ubropen er torno al 80%
- Influencia factor granja
- Tasa de resistencias a la bencilpenicilina esperada y mantenida

